skip to main content


Search for: All records

Creators/Authors contains: "Eidhammer, Trude"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The sensitivity of cloud feedbacks to atmospheric model parameters is evaluated using a CAM6 perturbed parameter ensemble (PPE). The CAM6 PPE perturbs 45 parameters across 262 simulations, 206 of which are used here. The spread in the total cloud feedback and its six components across the CAM6 PPE are comparable to the spread across the CMIP6 and AMIP ensembles, indicating that parametric uncertainty mirrors structural uncertainty. However, the high-cloud altitude feedback is generally larger in the CAM6 PPE than WCRP assessment, CMIP6, and AMIP values. We evaluate the influence of each of the 45 parameters on the total cloud feedback and each of the six cloud feedback components. We also explore whether the CAM6 PPE can be used to constrain the total cloud feedback, with inconclusive results. Further, we find that despite the large parametric sensitivity of cloud feedbacks in CAM6, a substantial increase in cloud feedbacks from CAM5 to CAM6 is not a result of changes in parameter values. Notably, the CAM6 PPE is run with a more recent version of CAM6 (CAM6.3) than was used for AMIP (CAM6.0) and has a smaller total cloud feedback (0.56 W m−2K−1) as compared to CAM6.0 (0.81 W m−2K−1) owing primarily to reductions in low clouds over the tropics and midlatitudes. The work highlights the large sensitivity of cloud feedbacks to both parameter values and structural details in CAM6.

     
    more » « less
  2. Abstract

    Statistical processing of numerical model output has been a part of both weather forecasting and climate applications for decades. Statistical techniques are used to correct systematic biases in atmospheric model outputs and to represent local effects that are unresolved by the model, referred to as downscaling. Many downscaling techniques have been developed, and it has been difficult to systematically explore the implications of the individual decisions made in the development of downscaling methods. Here we describe a unified framework that enables the user to evaluate multiple decisions made in the methods used to statistically postprocess output from weather and climate models. The Ensemble Generalized Analog Regression Downscaling (En-GARD) method enables the user to select any number of input variables, predictors, mathematical transformations, and combinations for use in parametric or nonparametric downscaling approaches. En-GARD enables explicitly predicting both the probability of event occurrence and the event magnitude. Outputs from En-GARD include errors in model fit, enabling the production of an ensemble of projections through sampling of the probability distributions of each climate variable. We apply En-GARD to regional climate model simulations to evaluate the relative importance of different downscaling method choices on simulations of the current and future climate. We show that choice of predictor variables is the most important decision affecting downscaled future climate outputs, while having little impact on the fidelity of downscaled outcomes for current climate. We also show that weak statistical relationships prevent such approaches from predicting large changes in extreme events on a daily time scale.

     
    more » « less